Monday 14 January 2008

PPLS AND PLAGUES

History can be written from two major vantage points. From the top of a mountain, with broad brush strokes, showing the major streams and landmarks, the BIG picture. Spenser and Toynbee are such historians, so is this book. The other view is from the trenches, the pieces, the small connections that we find so fascinating and absorbing. I believe that the big picture view of this book is a result of how it came into being as an elaboration of a single constellation of ideas that the author discovered while working on _The Rise of the West_, he found they interesting and continued to build the structure around these ideas in this book.
The book is about a collection of related ideas:
Parasitism--as he defines two types macro and micro.
Micro is the form we are familiar with as disease, the times viruses, bacteria, protozoan begin to use us as their energy and food source, to our consternation. He further defines two flavors: epidemic and endemic. Epidemic is the form in bubonic plague that swept Europe for 500 years at regular intervals. endemic is the idea of a parasitic form like the liver flukes that effect irrigated agriculture the world over, or like the civilized childhood diseases that effect the body politic like measles, mumps, smallpox.
Macroparasitism is this author's contribution to the discussion, unique to him as far as i know. Those other human's that prey on the weaker, less organized, less mobile etc. Epidemic macro are the Mongols(which are the topic of what i think is the best chapter in the book) or those horseman like in the movie the "Seventh Samari" who sweep out of the steppes or mountains to seize the harvest. Endemic macro are the priests, kings, emperors, tax farmers, etc who take the hard earned food from the producers without adequate recompense.
Using these ideas he ventures to paint those broad strokes, those vistas in history to show how the major currents, the big pieces fit. To this end the book is very well done, always absorbing, always enough detail to support but not to overwhelm the reader. Yet pithy and curiosity arousing enough to drive you to look into his sources, the real mark of good history.
I was pleased enough to get _Rise of the West_ and will start it next.
thanks for reading the review, i hope you get as much out of the book as did i.
richard williams




////////////////////////EDGE=LIFE,WHAT A CONCEPT?=Now we know we can boot up a chromosome system. It doesn't matter if the DNA is chemically made in a cell or made in a test tube. Until this development, if you made a synthetic chomosome you had the question of what do you do with it. Replacing the chomosome with existing cells, if it works, seems the most effective to way to replace one already in an existing cell systems. We didn't know if it would work or not. Now we do. This is a major advance in the field of synthetic genomics. We now know we can create a synthetic organism. It's not a question of 'if', or 'how', but 'when', and in this regard, think weeks and months, not years.


The Darwinian interlude has lasted for two or three billion years. It probably slowed down the pace of evolution considerably. The basic biochemical machinery o life had evolved rapidly during the few hundreds of millions of years of the pre-Darwinian era, and changed very little in the next two billion years of microbial evolution. Darwinian evolution is slow because individual species, once established evolve very little. With rare exceptions, Darwinian evolution requires established species to become extinct so that new species can replace them.

Now, after three billion years, the Darwinian interlude is over. It was an interlude between two periods of horizontal gene transfer. The epoch of Darwinian evolution based on competition between species ended about ten thousand years ago, when a single species, Homo sapiens, began to dominate and reorganize the biosphere. Since that time, cultural evolution has replaced biological evolution as the main driving force of change. Cultural evolution is not Darwinian. Cultures spread by horizontal transfer of ideas more than by genetic inheritance. Cultural evolution is running a thousand times faster than Darwinian evolution, taking us into a new era of cultural interdependence which we call globalization. And now, as Homo sapiens domesticates the new biotechnology, we are reviving the ancient pre-Darwinian practice of horizontal gene transfer, moving genes easily from microbes to plants and animals, blurring the boundaries between species. We are moving rapidly into the post-Darwinian era, when species other than our own will no longer exist, and the rules of Open Source sharing will be extended from the exchange of software to the exchange of genes. Then the evolution of life will once again be communal, as it was in the good old days before separate species and intellectual property were invented.

Physicist Freeman Dyson envisions a biotech future which supplants physics and notes that after three billion years, the Darwinian interlude is over. He refers to an interlude between two periods of horizontal gene transfer, a subject explored in his abovementioned essay.

Craig Venter, who decoded the human genome, surprised the world in late June by announcing the results of his lab's work on genome transplantation methods that allows for the transformation of one type of bacteria into another, dictated by the transplanted chromosome. In other words, one species becomes another.

George Church, the pioneer of the Synthetic Biology revolution, thinks of the cell as operating system, and engineers taking the place of traditional biologists in retooling stripped down components of cells (bio-bricks) in much the vein as in the late 70s when electrical engineers were working their way to the first personal computer by assembling circuit boards, hard drives, monitors, etc.

Biologist Robert Shapiro disagrees with scientists who believe that an extreme stroke of luck was needed to get life started in a non-living environment. He favors the idea that life arose through the normal operation of the laws of physics and chemistry. If he is right, then life may be widespread in the cosmos.

Dimitar Sasselov, Planetary Astrophysicist, and Director of the Harvard Origins of Life Initiative, has made recent discoveries of exo-planets ("Super-Earths"). He looks at new evidence to explore the question of how chemical systems become living systems.

Quantum engineer Seth Lloyd sees the universe as an information processing system in which simple systems such as atoms and molecules must necessarily give rise complex structures such as life, and life itself must give rise to even greater complexity, such as human beings, societies, and whatever comes next.

Home About Edge Features Edge Editions Press Edge Search



--------------------------------------------------------------------------------




--------------------------------------------------------------------------------
"Life/ Consists of propositions about life."
— Wallace Stevens ("Men Made out of Words")

LIFE: WHAT A CONCEPT!
An Edge Special Event at Eastover Farm

Freeman Dyson, J. Craig Venter, George Church, Robert Shapiro, Dimitar Sasselov, Seth Lloyd


--------------------------------------------------------------------------------

The essential idea is that you separate metabolism from replication. We know modern life has both metabolism and replication, but they're carried out by separate groups of molecules. Metabolism is carried out by proteins and all kinds of other molecules, and replication is carried out by DNA and RNA. That maybe is a clue to the fact that theystarted out separate rather than together. So my version of the origin of life is that it started with metabolism only.

FREEMAN DYSON



FREEMAN DYSON is professor of physics at the Institute for Advanced Study, in Princeton. His professional interests are in mathematics and astronomy. Among his many books are Disturbing the Universe, Infinite in All Directions Origins of Life, From Eros to Gaia, Imagined Worlds, The Sun, the Genome, and the Internet, and most recently A Many Colored Glass: Reflections on the Place of Life in the Universe.

Freeman Dyson's Edge Bio Page



--------------------------------------------------------------------------------

FREEMAN DYSON: First of all I wanted to talk a bit about origin of life. To me the most interesting question in biology has always been how it all got started. That has been a hobby of mine. We're all equally ignorant, as far as I can see. That's why somebody like me can pretend to be an expert.

I was struck by the picture of early life that appeared in Carl Woese's article three years ago. He had this picture of the pre-Darwinian epoch when genetic information was open source and everything was shared between different organisms. That picture fits very nicely with my speculative version of origin of life.

The essential idea is that you separate metabolism from replication. We know modern life has both metabolism and replication, but they're carried out by separate groups of molecules. Metabolism is carried out by proteins and all kinds of small molecules, and replication is carried out by DNA and RNA. That maybe is a clue to the fact that they started out separate rather than together. So my version of the origin of life is it started with metabolism only.

You had what I call the garbage bag model. The early cells were just little bags of some kind of cell membrane, which might have been oily or it might have been a metal oxide. And inside you had a more or less random collection of organic molecules, with the characteristic that small molecules could diffuse in through the membrane, but big molecules could not diffuse out. By converting small molecules into big molecules, you could concentrate the organic contents on the inside, so the cells would become more concentrated and the chemistry would gradually become more efficient. So these things could evolve without any kind of replication. It's a simple statistical inheritance. When a cell became so big that it got cut in half, or shaken in half, by some rainstorm or environmental disturbance, it would then produce two cells which would be its daughters, which would inherit, more or less, but only statistically, the chemical machinery inside. Evolution could work under those conditions.

LLOYD: These are naturally occurring lipid membranes?

DYSON: Yes. Which we do know exist. That's stage one of life, this garbage bag stage, where evolution is happening, but only on a statistical basis. I think it's right to call it pre-Darwinian, because Darwin himself did not use the word evolution; he was primarily interested in species, not in evolution as such.

Well then, what happened next? Stage two is when you have parasitic RNA, when RNA happens to occur in some of these cells. There's a linkage, perhaps, between metabolism and replication in the molecule ATP. We know ATP has a dual function. It is very important for metabolism, but it also is essentially a nucleotide. You only have to add two phosphates and it becomes a nucleotide . So it gives you a link between the two systems. Perhaps one of these garbage bags happened to develop ATP by a random process. ATP is very helpful to the metabolism, so these cells multiplied and became very numerous and made large quantities of ATP. then by chance this ATP formed the adenine nucleotide, which polymerized into RNA. You had then parasitic RNA inside these cells, forming a separate form of life, which was pure replication without metabolism. RNA could replicate itself. It couldn't metabolize, but it could grow quite nicely.

Then the RNA invented viruses. RNA found a way to package itself in a little piece of cell membrane, and travel around freely and independently. Stage two of life has the garbage bags still unorganized and chemically random, but with RNA zooming around in little packages we call viruses carrying genetic information from one cell to another. That is my version of the RNA world. It corresponds to what Manfred Eigen considered to be the beginning of life, which I regard as stage two. You have RNA living independently, replicating, traveling around, sharing genetic information between all kinds of cells. Then stage three, which I would say is the most mysterious, began when these two systems started to collaborate. It began when the invention of the ribosome, which to me is the central mystery. There’s a tremendous lot to be done with investigating the archaeology of the ribosome. I hope some of you people will do it.

Once the ribosome was invented, then the two systems, the RNA world and the metabolic world, are coupled together and you get modern cells. That's stage three, but still with the genetic information being shared, mostly by viruses traveling from cell to cell, so it is open source heredity. As Carl Woese described it, evolution could be very fast.

That's roughly the situation as Carl Woese described it—you have modern cells with metabolism directed by RNA or DNA, but without any private intellectual property, so that the chemical inventions made by one cell could be shared with others. Evolution could go in parallel in many different cells, so it could go a lot faster. The best chemical devices could be shared between different cells and combined, so evolution would go rapidly in parallel. That was probably the fastest stage of chemical evolution, when most of the basic biochemical inventions were made.

Stage four is the stage of speciation and sex, which are the next two big inventions, and that's the beginning of the Darwinian era, when species appeared. Some cells decided it was advantageous to keep their intellectual property private, to have sex only with themselves or with the members of their own species—thereby defining species. That was then the state of life for the next two billion years, the Archeozoic and Proterozoic eras. It was a rather stagnant phase of life, continued for two billion years without evolving fast.

Then you had stage five, the invention of multicellular organisms, which also involved death, another important invention.

Then after that came us—stage six. That's the end of the Darwinian era, when cultural evolution replaces biological evolution as the main driving force.

"Cultural" means that the big changes in living conditions are driven by humans spreading their technology and their ways of making a living, by learning from one another rather than by breeding. So you are spreading ideas much more rapidly than you're spreading genes.

And stage seven is what comes next.

The question is whether any of that makes sense. I think it does, but like all models, it's going to be short-lived and soon replaced by something better.

The other thing I was going to talk about was domesticated biotech, which is a completely separate subject. That comes from looking around at what's happened to physics technology in the last twenty years, with things like cell phones and iPhones and the things that I see around me at the table.


Personal computers of all kinds. Digital cameras. And the GPS navigation system. All those wonders of technology, which have suddenly descended from the sky to the earth. They have become domesticated. That has been a tremendous change, something we never predicted.

I remember when von Neumann was developing the first programmable computer at Princeton. I happened to be there, and he talked a lot about the future of computing, and he thought of computers as getting bigger and bigger and more and more expensive, so they belonged to big corporations and governments and big research labs. He never in his wildest dreams imagined computers being owned by three-year-olds, and being part of the normal upbringing of children. It's said that somebody asked him at one point, how many computers would the United States need? How large would the market be? And he answered, eighteen.

So it went in totally the opposite direction.

VENTER: Well, it went in both directions.

DYSON: To some extent, but even the biggest computers are not much bigger than they were in those days. It's remarkable—I remember the very first computer in Princeton, and it was a huge thing—a room about as big as this tent, full of machinery. This was in 1951, '52. It was actually running smoothly around '53.

VENTER: But that was less powerful than your laptop.

DYSON: Oh, much less. The total memory was four kilobytes. And he did an amazing lot with that. Especially a biologist who was there at the time, called Nils Barricelli, did simulated evolution amazingly well with a memory of four kilobytes. He developed models of evolving creatures forming an ecology, and they showed punctuated equilibrium, exactly the way real species do. It was astonishing how much he could get out of that machine.

LLOYD: The problem is that computers get faster by a factor of two every year and a half, but computer programmers conspire to make them run slightly slower every year and a half, by junking them up with all sorts of garbage.

DYSON: Because von Neumann thought that he was dealing with unreliable hardware, he made another mistake. The problem was how to write reliable software so as to deal with unreliable hardware. Now we have the opposite problem. Hardware is amazingly reliable, but software is not. It's the software that sets the limit to what you can do.

My prediction or prognostication is that the same thing is going to happen to biotech in the next 50 years, perhaps 20 years; that it's going to be domesticated. And I take the example of the flower show in Philadelphia and the reptile show in San Diego, at both of which I saw demonstrations of the enormous market there is for people who are skilled breeders of plants and animals. And they're itching to get their hands on this new technology. As soon as it's available I believe it's going to catch fire, the way computers did when they became available to people like you.

It's essentially writing and reading DNA. Breeding new kinds of plants and trees and bushes by writing the genomes at home on your personal machine. Just a little DNA reader and a little DNA writer on your desk, and you play the game with seeds and eggs instead of with pictures on the screen. That's all.

LLOYD: One of the reasons computers became ubiquitous is the phenomenon of Moore's Law, where they became faster and more powerful by a factor of two every two years. Is there an equivalent here?

DYSON: Exactly the same thing is happening to DNA at the moment. Moore's Law is being followed as we speak, both by reading and writing machines.

LLOYD: At roughly the same rate?

DYSON: Yes.

VENTER: It's happening faster. I had this discussion with Gordon Moore and I said that sequence reading and writing was changing faster than Moore's Law, and he said, but it won't matter, as you're ultimately dependent on Moore's Law.

DYSON: I agree with that. At the moment it's going fast.

CHURCH: Unless we build bio-computers—right now the best computers are bio-computers.

BROCKMAN: It took two weeks for a 17-year-old to hack the iPhone—and here we're talking about DNA writers and readers. That same kid is going to start making people.

DYSON: That's true, the driving force is the parents, not the scientists. Fertility clinics are a tremendously large and profitable branch of medicine, and that's where the action is. There's no doubt this is going into fertility clinics as well. For good or evil, that's happening.

BROCKMAN: But isn't this a watershed event because of our ideas about life? What's possible will happen. What will the societal impact be?

DYSON: It's not true that what's possible will happen. We have strict laws about experimenting with human subjects.

BROCKMAN: You can't hack an iPhone either; certain activities along these lines are illegal.

DYSON: But it's different with medicine. You do get put in jail if you break the rules.

BROCKMAN: Not in Romania.

DYSON: There are clear similarities but also great differences. Certainly it is true that people are going to be monkeying around with humans; I totally agree with that. But I think that society will put limits on it, and that the limits are likely to be broken from time to time, but they will be there.

SHAPIRO: I just want to bring in one distinction here, because two things are getting confused. To go to computers, I remember that perhaps 30 years ago there was something called Heathkit and the idea was, why buy a computer when you can build your own computer in your basement? Well I don't see anyone constructing their own computers in their basements any more.

If you purchase from computers from Dell or from IBM they will assemble them for you. But the actual construction, the difficult part, takes place in specialized institutions and then they make their products available. Everyone has a cell phone, but I doubt that most of the people, if they dropped it, could repair their cell phones. And that the new biotechnology—while humans would get the benefit, even now I think, one can contract to put the green fluorescent proteins into all sorts of animals and one artist has done just that and arranged to have specialized laboratories put it in, and then he had an exhibit where he made it seem as if he himself had done it. That isn't the case. DNA sequencing will be done massively, and engineering will be done massively, and new organisms will be constructed. But they will be done in specialized facilities. Only the products will become available to the general public. No child will go into his basement and set up the necessary DNA synthesizers, or DNA sequencers and proceed to make his own new organisms.

DYSON: You're thinking like von Neumann, and I disagree.

VENTER: That used to be a compliment.

DYSON: It's true: what you will sell to the kids is kits—you won't sell the whole apparatus for doing things but you will sell a kit that will do the things that are fun, just as you do with computers that are sold for children to play games. The computers only play games, they don't actually calculate numbers.

LLOYD: In fact there's a good analogy in the history of computation—30 years ago MIT freshmen arrived having built a computer, and then shortly after that they stopped building computers. Twenty years ago, or fifteen years ago, they arrived knowing how to program computers. But nowadays when freshmen arrive, far fewer of them have actually programmed a computer before, in the sense of writing a program in a language such as Java. But they use computers far more, and they're great users of software. They know vast amounts about how computers work and what you can do with the software. Why? Because it's a lot easier to do—why program a computer if somebody can enable you to just use the software and program it—of course when you're playing Grand Theft Auto, you're effectively programming the computer at the same time. So I suspect that what Freeman says is right, people will be using this new genetic technology, but maybe there's an analog of programming in the constructing new organisms which will enable people to do it—an analog of software so people will become the users of the software.

SHAPIRO: I see children being able to purchase lizards, say, that glow in the dark—with green fluorescence, but I don't see them creating them in their basement.

DYSON: I think both are going to happen.

SASSELOV: Maybe the question is, what is the time scale for the second thing happening? That is, by then the technology will be so developed that we may be different as a species, and not care as much as we do today whether some kid is capable of tinkering with a human. Because we will have tinkered enough, in the regulated way, by then, so that it wouldn't matter as much.

DYSON: Yes, nobody can ever know in advance; all these things always turn out differently than you expected.

LLOYD: In fact this is a real specter—because as you say, we're not allowed to tinker with humans, but we are allowed to tinker with rats, that we very rapidly will develop rats who surpass us in all abilities.Whereas we're just stuck in the dark ages.

BROCKMAN: Freeman, last night I asked Richard Dawkins if he cared to comment on your chapter suggesting "the end of the Darwinian interlude". He sent the following comment with the caveat that it is a hastily written response solely for the purpose of this meeting. He writes:

"By Darwinian evolution he [Woese] means evolution as Darwin understood it, based on the competition for survival of noninterbreeding species."

"With rare exceptions, Darwinian evolution requires established species to become extinct so that new species can replace them."

These two quotations from Dyson constitute a classic schoolboy howler, a catastrophic misunderstanding of Darwinian evolution. Darwinian evolution, both as Darwin understood it, and as we understand it today in rather different language, is not based on the competition for survival of species. It is based on competition for survival within species. Darwin would have said competition between individuals within every species. I would say competition between genes within gene pools. The difference between those two ways of putting it is small compared with Dyson's howler (shared by most laymen: it is the howler that I wrote The Selfish Gene partly to dispel, and I thought I had pretty much succeeded, but Dyson obviously hasn't read it!) that natural selection is about the differential survival or extinction of species. Of course the extinction of species is extremely important in the history of life, and there may very well be non-random aspects of it (some species are more likely to go extinct than others) but, although this may in some superficial sense resemble Darwinian selection, it is not the selection process that has driven evolution. Moreover, arms races between species constitute an important part of the competitive climate that drives Darwinian evolution. But in, for example, the arms race between predators and prey, or parasites and hosts, the competition that drives evolution is all going on within species. Individual foxes don't compete with rabbits, they compete with other individual foxes within their own species to be the ones that catch the rabbits (I would prefer to rephrase it as competition between genes within the fox gene pool).

The rest of Dyson's piece is interesting, as you'd expect, and there really is an interesting sense in which there is an interlude between two periods of horizontal transfer (and we mustn't forget that bacteria still practise horizontal transfer and have done throughout the time when eucaryotes have been in the 'Interlude'). But the interlude in the middle is not the Darwinian Interlude, it is the Meiosis / Sex / Gene-Pool / Species Interlude. Darwinian selection between genes still goes on during eras of horizontal transfer, just as it does during the Interlude. What happened during the 3-billion-year Interlude is that genes were confined to gene pools and limited to competing with other genes within the same species. Previously (and still in bacteria) they were free to compete with other genes more widely (there was no such thing as a species outside the 'Interlude'). If a new period of horizontal transfer is indeed now dawning through technology, genes may become free to compete with other genes more widely yet again.

As I said, there are fascinating ideas in Freeman Dyson's piece. But it is a huge pity it is marred by such an elementary mistake at the heart of it.

Richard


DYSON: Good. Yes, I have two responses.

First, what I wrote is not a howler and Dawkins is wrong. And I have read his book.

Species once established evolve very little, and the big steps in evolution mostly occur at speciation events when new species appear with new adaptations. The reason for this is that the rate of evolution of a population is roughly proportional to the inverse square root of the population size. So big steps are most likely when populations are small, giving rise to the "punctuated equilibrium'' that is seen in the fossil record. The competition is between the new species with a small population adapting fast to new conditions and the old species with a big population adapting slowly.

Second, it is absurd to think that group selection is less important than individual selection. Consider for example Dodo A and Dodo B, competing for mates and progeny in the dodo population on Mauritius. Dodo A competes much better and has greater fitness, as measured by individual selection. Dodo A mates more often and has many more grandchildren than Dodo B. A hundred years later, the species is extinct and the fitness of A and B are both reduced to zero. Selection operating at the species level trumps selection at the individual level. Selection at the species level wiped out both A and B because the species neglected to maintain the ability to fly, which was essential to survival when human predators appeared on the island. This situation is not peculiar to dodos. It arises throughout the course of evolution, whenever environmental changes cause species to become extinct.

In my opinion, both these responses are valid, but the second one goes more directly to the issue that divides Dawkins and myself.

VENTER: I have trouble with some of the fundamental terms. What's your definition of "species"? That's something I have great difficulty with lately out of our research.

DYSON: Yes, it is a problem—it's supposed to be just a population that breeds within the population but not outside, but of course there are all sorts of exceptions.

VENTER: That ignores most of biology.

DYSON: Yes, so I don't know what the real definition is. But that's the conventional definition.

VENTER: It's a human definition.

DYSON: It is fuzzy. Like most things.

LLOYD: So for sexually reproducing species, then, it's less fuzzy than for bacteria.

DYSON: Right.

VENTER: But it really comes down to one or two recognition molecules that determine the species—if it's based on interbreeding, it's the sperm recognition sites, right?

DYSON: Yes.

VENTER: So that determines the species, then.

DYSON: Well, amongst other things.

CHURCH: Chromosome dynamics, morphology, behavior—many things. Depending on how complex the organism is.

VENTER: It's easy to tell a human from a giraffe, and we can call that a different species.

DYSON: One of the books that I've learned most from, is The Beak of the Finch, which describes evolution as it's observed in the Galapagos by Peter and Rosemary Grant. It's remarkable that they can actually see from year to year species starting to hybridize when conditions are good and then separating again when conditions are bad. So even on a year-to-year time scale you can actually see this happening, that species are not well-defined.

LLOYD: Sorry, I'm not familiar with this work. So they hybridize when times are good, and when times are bad they separate into smaller populations. Is this so that they can evolve more rapidly?

DYSON: Yes. So they can specialize. Because in bad times you have to specialize on chewing particular seeds.

VENTER: During droughts, all that was left were these really hard seeds. Finches that survive have Arnold Schwarzenegger beaks.

DYSON: Not only those—you can also have a separate population which specializes on the small seeds, which have small beaks. It happens because of the geography that you have violent swings in climate. During El Niño conditions are wet, and between El Niños, conditions are dry. So selection is brutal—almost every year about half of them get selected out.

VENTER: One of the highlights of my round-the-world expedition was meeting up with the Grants in the Galapagos, and their little tent on the site of Daphne Major. They spent three months on this island in this little tent, there's no fresh water, there's nothing there. And they live off of bottled water and cans of tuna fish. And I took them a bottle of chilled champagne. It became a happier eco-system. Remarkable what they've done.

DYSON: The enormous advantage that they had was that the birds are completely tame. You can just walk up to a bird and put a ring around its leg and it doesn't fly away. That's what made it all possible. They know every bird personally.

VENTER: Better than tame—if you walk on their path, the boobies and stuff will peck at your leg. It's their island. The humans become non-tame after a while.
But so that's an important part of the definition. Are the finches with the larger beaks a different species, in your view?

DYSON: Yes, according to Darwin they are. In fact they do interbreed quite extensively.

VENTER: So two base pair change in a genome could be sufficient to create a new species out of 1.5 billion.

DYSON: Yes.

VENTER: I'm not sure everybody will buy that definition... So that makes you a very different species than George.

DYSON: The real problem is the lawyers. You have the endangered species act; that means you have to make a legal definition of the species.

CHURCH: That's true. We're all endangered.

LLOYD: I gather human beings are a genetically very non-diverse species. We take two squirrels on this tree right here—they're much farther apart genetically than we are with any other human being on the face of the earth. So we're inclined to see things in our own light.

VENTER: What's your evidence for that?

CHURCH: It's true for chimpanzees; I don't know about squirrels.

LLOYD: But homo sapiens is a quite recent species—and also the mitochondrial DNA evidence suggests that we're descended from common ancestors in the not very distant past—within the last hundred thousand years or so. So there seems to have been a genetic bottleneck in the human species, compared with hominids as a whole, within the last hundred thousand years. Which makes us much less diverse than, for instance, squirrels.

SHAPIRO: The thrust of what Freeman was saying if we accept most of what he said, which I certainly do, is that concepts like species and interbreeding are about to become in a sense extinct. Because entering the new era, laboratories will exist which will recreate species or combine qualities of one species with qualities of another and it will be up to the designer the extent to which they interbreed or interbreed with existing organisms and so on. So that perceivably, if civilization continues we will then be in charge of what species may come into being and what species do not.

LLOYD: I have a query: is that actually important, actually? Freeman, you said we reached the end of Darwinian evolution, where human beings are the dominant species on earth, and species that can't co-evolve with humans are probably doomed. But this means that in this end of Darwinian evolution, then genes are no longer so important, and instead ideas, which can be generated more rapidly, and—dare I even say—things like computations and software are more important. Are you envisaging an era where genetic information returns to the predominant position that it had for billions of years on earth?

DYSON: No, I don't look very far. I'm quite conservative as far as human society is concerned. We would be wise to keep ourselves as much as possible the way we are, and I hope we'll be successful in it. I don't see any great likelihood if you monkey around with humans that you'll produce anything much better.

BROCKMAN: This sounds like an engineer's approach, rather than a thinker's approach. As a scientist, aren't you talking about a huge watershed concerning our ideas of what it means to be human or even what it means to be alive? Can you imagine what ideological factions or religious groups would do with some of the statements that have been made this afternoon?

LLOYD: Ironically many religions are sets of ideas, and one of the things that many religions tend to do is to try to sequester themselves genetically. Keep the gene pool within this religion from people within this religion—prevent intermarriage with people of other faiths. You could say religion is almost an attempt by ideas to get back to the good old days of rapid evolution via genetic engineering in small populations.

DYSON: I'm not familiar with this feeling that culture is collapsing. All these millions of people who are now publishing blogs on the Web are to my mind producing something you might call culture. Of very uneven quality, but it's easier to publish now than it used to be. And that to me is not necessarily a disaster. It may be a step forward.

LLOYD: In fact it's easier to preserve information as well. In the past one of the main problems with culture is it would disappear because there was only one copy. When there's only one copy, things get easily destroyed. And yes, maybe because in the United States we don't have as much culture so we're not so worried about losing it.

Perhaps worrying about the wholesale copying and monkeying with genetic information might open people's eyes to the danger of copying and monkeying with ordinary cultural information—for instance, violating copyrights. While I am usually for any kind of information manipulation I can think of, it does seem a little strange to try to manipulate human genomes. Of course, the primary way of manipulating genomes in the past, which people have been doing for ages, is by breeding. People are rather squeamish about attempts to manipulate human genomes to create perfect human beings just by breeding,. This is an old fear among people and and an old temptation as well. We may not be so culturally bereft with the mechanisms that we need to cope with these kinds of issues as we might think. It is scary. But anything fun is scary.

COREY POWELL: This may be a bridging question: is open source sort of an inexorable direction that we're moving in—as people blog openly, and copyrighted music seems to be losing out to open and tradable music—is that the way you expect it's going to be with genomics as well, that ultimately this information is all going to be openly and freely available, and that's the way this whole system is going to progress?

DYSON: Not necessarily. Bill Gates is still around. But that remains to be seen. Clearly this is the alternative.

CHURCH: Genomics for the most part has been quite open historically—even in profit-making sectors they will publish papers and so forth, and the genome project went so far as to try to publish things within one week of collecting the data. So it's really quite aggressive so far. Almost every genome that you could possibly want, including some that some people would prefer not to be in open source, like small pox, which Craig helped to do, and the 1918 flu virus—all those things are available. So I think that is a trend.

DYSON: It's unfortunate that small pox is out there—the world would be a lot safer if that hadn't been published.

VENTER: I can disagree very violently with you on that.

DYSON: Good. That's a minor exception, but as a general rule, openness is by far preferable.

VENTER: Even with that, I think I could convince you openness is far more important. There were two states that were funding an incredible amount of secret research—the U.S. and the former Soviet Union—on trying to modify small poxes, make them more dangerous, et cetera. So if it was not open source, those states would be the only ones with access to this information. There would be nothing out there for either tracking it, understanding it, making better vaccines, et cetera, if it was even a real threat. And on the synthetic biology side, it's a very, very low threat because the DNA is not infective. It's a hypothetical threat that people like to use to scare people, but in reality it's really not one.

CHURCH: DNA is not infective but you can make infective viruses with the DNA in the lab…

VENTER: Hypothetically. But nobody's done it yet.

CHURCH: With other pox viruses you can do it—so it's not that hypothetical.

VENTER: There's probably a few thousand pox viruses out and very closely related species that could easily become small pox. I'll argue for open source of information—my genome is on the Internet, but I'm much more selective who I share my biological materials with. There's open source and there's open source.

SHAPIRO: You did raise an interesting point there, though, because genetic privacy is something which is often debated—the rights of individuals to genetic privacy, not to have their genomes known.

VENTER: But that's driven by fear, not by knowledge.

SHAPIRO: But what I'm saying is, that genetic privacy actually maybe impossible. Let us say that I wish that he hadn't put his genome on the Internet and wanted it secretive, say he was running for public office and had some gene for some mental instability, and therefore wanted no one to have his genome; yet someone wanted his genome. All I'd need to do is swipe your glass, and shake your hand.

VENTER: This is issue that we could talk about that George and I have been facing that's counteractive to what our government is doing. Francis Collins is setting up data bases, where you have to have retinal scans and finger prints to have access, and we're publishing our data on the Internet. So, open source is not a guarantee of any means at all.
We hope by making human genetic data available, people will find in fact that it's almost impossible for your scenario, wherein you can look at one gene and say this person's going to have mental illness. Even the entire genetic code doesn't provide that answer. You have to know the environment, you have to know a lot of other things.

Perhaps 50 years from now we can get much closer to those answers of predicting things, but we are not just genetic animals. My dangerous idea is that we're probably far more genetic animals than society is willing to accept. But we're not purely genetic animals, so I don't think it's going to be as predictive as some people think.

SHAPIRO: Well, certain specific things will be predictive — for example, Huntington's disease is due to a repeat of certain letters in DNA.

VENTER: There are some very rare exceptions, yes.

SHAPIRO: You can even tell what onset is likely at what age by counting the number of repeats that are present.

VENTER: But that's the exception that doesn't make the rule. That's what every geneticist has used as the few early examples of success in genetics of single gene disorders.

SHAPIRO: But there are cases where individuals themselves didn't want to know whether or not they had inherited the gene for Huntington's disease, or if they did, whether they were going to have a severe form. Yet if some external person wanted to inform himself as to whether that individual did carry the gene, it would almost be impossible to prevent that individual from getting the information. You would practically have to live in seclusion, with all of your clothing, all of your artifacts destroyed on contact.

LLOYD: It's interesting because in fact the digital nature of genetic information, the fact that it's seven billion bits that can easily be written into a computer hard drive, makes genetic information much more like the information in computers and it can be manipulated in that way. Whereas strangely enough, our mental information, the information that's in our brains, is much less digital in a fashion, and much harder to get hold of.


And in fact it does suggest that, since this information has been digitized, and will continue to be digitized and manipulated, and be more available, the question of how secrecy and privacy for genes is rather similar to the privacy of your iPhone — How privately are you allowed to keep the information in your iPhone? How privately are you allowed to keep the information in your genes? Because it will be available, and it will be possible to get it and to digitize it so then the question is, do you need codes for protecting your genetic code? Maybe everybody should be issued their own public key cryptic system so they and only they can have access to their own genetic code.

CHURCH: We're kind of in a state of change where we're deciding what's the right thing. For example, consider our faces. Some people keep their faces completely masked; in most situations it's considered anti-social to keep your face completely masked. Like walking into a bank, for example. But it's extraordinarily revealing—it not only reveals something about your physiology, your current health, your relationship with the person you're talking to, whether you're angry or very happy—it's very revealing. And so we've made a conscious decision in society, for the most part, to not keep that private. We might do the same thing for genomes, it could be, who are we protecting? But it's an open question.

SHAPIRO: Well we shed cells so easily unlike faces that it's almost impossible to keep your genome private, if there is someone out there determined to have it.

CHURCH: I agree with you. We'll all become bubble people, living in our little hermetically sealed bubbles so nobody can get in.

LLOYD: Who steals my genome steals trash, right?





//////////////////////////////How does one get around this? Entropy is like a business. It doesn't matter if one subsidiary of the business loses money as long as the others show enough profit to offset it. What you need is a larger system, the environment, and part of it absorbs energy and gets organized, and in payment for that, the rest of the environment gets disorganized, usually by going up a little bit in temperature, which is the common denominator of entropy. If you convert other kinds of energy to heat, you can pay for a lot of organization.




////////////////////////////////////But the same type of reasoning that Richard Dawkins uses to explain evolution could apply equally well to what could be called thermo-dynamic evolution. In fact natural selection may just be one special case of thermo-dynamic evolution; there may be other forms of evolution undetected by us. So his schoolboy howler is the section on the origin of life. He writes brilliantly elsewhere. If you want to write that to him, Freeman—He hasn't written an email to me; I keep my hands off evolution, I don't claim to know very much about it.




////////////////////////////I said How would one detect advanced mineral life and he said, well there are always fresh starts. And he would invest money in looking for unusual minerals—following the activity of minerals that are out of place, or growing unusually in different areas, or having interesting interactions with organic compounds, unusual catalytic effects. I would have told him my idea would just be to set up a culture medium consisting of rich minerals—someone was talking jokingly about the ultimate diet where you're not a meat-eater, you're not a vegetarian, you're not even a vegan because even vegetables are alive, you're a mineral. You eat only minerals and breathe only carbon dioxides, and that's the ultimate in dietary purity.



////////////////////////////////Basically, in order to explain to you why this is interesting, I want to first of all convince you about three things, which are important to my approach. The first one is that what we are looking for is baryonic in nature. What I mean by that is something of which I don't need to convince you, I believe, but you should bear it in mind because this is a feature of our universe, the one we observe. Baryons are all the particles that make up atoms and all that is around us, including ourselves. But that's not necessarily the most common entity in the universe, as you—I'm sure—know about dark matter and dark energy. I think we have to agree that what we are looking for and would call life is baryonic in nature, and there is good reason to believe that dark matter and dark energy are not capable of that level of complexity in this universe yet—or at all.



////////////////////////////////////The second point which I want to convince you of—or use as my background for what I'll tell you here—is that we should agree that what we are looking for, what we call life, is a complex chemical process. Basically, the ability of those atoms to combine in non-trivial ways. This is actually my point of departure, where I would be looking at life more from the purely thermodynamic aspect, that is from the point of view which Robert here described and H. Morowitz has been very eloquent in defining and actually done some research on. That is, what is the parameter space in which you can have chemistry which is complex enough to lead to a qualitatively new phenomenon, a phenomenon which we don't see in the rest of the universe. That's actually an important point here.



//////////////////////////////But it is one of those steps that we now understand as the development of our world, that is of our universe, of starting with very simple baryonic structure for that matter, which then becomes more and more complex. Stellar evolution is one of those phenomena that did not exist in the first half billion years of the universe. And this is not a hypothesis; we know it. We actually can observe a lot of it, and we know that there were no stars during the epoch of recombination, which is the cosmic microwave background, with all the structure that we see in it. And then there were stars, and then stars started a new process, which did not exist in the universe before, which is the synthesis of the heavy elements. That is—baryons working together as elementary particles and building a structure—the Mendeleev table, which then would lead to chemistry.


///////////////////////////////VENTER: How many years ago was this?

SASSELOV: 13.7 billion years ago is where we see the precursor of the microwave background radiation, so that's our first very well-studied piece of evidence. Then about half a billion later is the time when the first stars can form, from the gas, and they're mostly made of hydrogen and helium. Then they go through a period where over a time of five billion years they produce enough carbon, nitrogen and oxygen and all the heavy elements, where you start effectively producing planets. And then we come to 4.5 billion years, which is the origin of our own solar system and the Earth. And almost within a half billion years, some complex chemistry which we now see covering entirely and co-opting the geophysical cycles of this planet. So that's to give you a quick idea about the time scales.




/////////////////////////////////In that sense life is an integral part of that global development that we see. And although we know only one example of it, it doesn't seem unusual when you think of it that way—as a progression of complexity that the baryonic aspect of this—baryonic matter—in this universe has actually the propensity to lead to. So the question then is what is this good for understanding the origins of life, or possible pathways? And even more generically, could we design experiments in which we can find out whether all these possible baryonic pathways really merge into one—the one that produces life here on Earth—or are there multiple pathways? Even if you could answer that question, that would be very exciting, because it will tell us something about the general rules of complexity that baryonic chemistry can really lead to.



//////////////////////////////////The question then is, the third aspect which I want to convince you of, is we know quite a bit about the universe, but there are only a few places in the universe where you can think of that complex chemistry being capable to survive over a sufficiently long period of time. And vacuum is not one of them, in the sense of surviving in which you were talking about the origin of life; starting with smaller molecules, which then have enough time to lead to more complex ones. And when I think of vacuum, I don't mean the surface of a comet, but really the inter-stellar medium, with its very low density.

I can imagine life that started on some surface then migrating to live in the inter-stellar medium. But I cannot imagine, as an astrophysicist, from what I know, that there is an environment which is stable enough over the time scales necessary for that chemistry to take place. So I am a little bit biased in that sense to planets and planetary systems as the only environment that we know of today, as far as we know in the universe, which has all of those factors put together—that is, stability over long periods of time, but sufficiently low or moderate temperatures. (Stars are very stable over billions of years, but they all have very high temperatures, all throughout.) And basically the overall thermodynamic window that Morowitz is talking about, which allows complex chemistry. That's actually much broader than simply having water.



////////////////////////////////////SETH LLOYD: I'd like to step back from talking about life itself. Instead I'd like to talk about what information processing in the universe can tell us about things like life. There's something rather mysterious about the universe. Not just rather mysterious, extremely mysterious. At bottom, the laws of physics are very simple. You can write them down on the back of a T-shirt: I see them written on the backs of T-shirts at MIT all the time, even in size petite. IN addition to that, the initial state of the universe, from what we can tell from observation, was also extremely simple. It can be described by a very few bits of information.

So we have simple laws and simple initial conditions. Yet if you look around you right now you see a huge amount of complexity. I see a bunch of human beings, each of whom is at least as complex as I am. I see trees and plants, I see cars, and as a mechanical engineer, I have to pay attention to cars. The world is extremely complex.

If you look up at the heavens, the heavens are no longer very uniform. There are clusters of galaxies and galaxies and stars and all sorts of different kinds of planets and super-earths and sub-earths, and super-humans and sub-humans, no doubt. The question is, what in the heck happened? Who ordered that? Where did this come from? Why is the universe complex? Because normally you would think, okay, I start off with very simple initial conditions and very simple laws, and then I should get something that's simple. in fact, mathematical definitions of complexity like algorithmic information say, simple laws, simple initial conditions, imply the state is always simple. It's kind of bizarre. So what is it about the universe that makes it complex, that makes it spontaneously generate complexity? I'm not going to talk about super-natural explanations. What are natural explanations—scientific explanations of our universe and why it generates complexity, including complex things like life.

I claim that there is a very basic feature of the universe, which makes it natural for it to generate complex systems and complex behaviors. We shouldn't be surprised by this. It's intrinsic in the laws of physics. This is what Craig Venter was asking, what is it about the laws of physics that give us things like life? Not only that, we know what this feature is. Let me tell you what it is, and then I'll tell you what it has to do with life. Because the spontaneous generation of complexity is important for lots of things other than life. Remember, life is overrated. There's plenty of other interesting stuff going on in the universe other than life. Long after we're all dead, and maybe other biological forms—carbon-based forms—of life are dead, I hope that other interesting things will still be going on.

Okay. What is this feature that is responsible for generating complexity? I would say that it is the universe's intrinsic ability to register and process information at its most microscopic levels. When we build quantum computers, it's one electron: one bit, to paraphrase the Supreme Court. Because of quantum mechanics, the world is intrinsically digital. That's what the 'quantum' in quantum mechanics means: it says the world comes in chunks. It's discrete. And this discreteness implies that elementary particles register bits. Their state can be described by a certain number of bits. In the case of the electron spin, one bit. In the case of photon polarization, one bit of information. Bits are intrinsic to the way the universe is. It's digital. And this digitality at the level of elementary particles gives rise to a very digital nature for chemistry, because chemistry arises out of quantum mechanics together with the masses of the elementary particles and the coupling constants of nature and the electro-magnetic force, et cetera.

Quantum mechanics means that there are only a discrete number of species of chemicals. You can only put together two hydrogens and an oxygen to make a molecule in one way that I know of. This means that we can catalog chemicals in a discrete list—chemical number one, chemical number two, chemical number three—you can order it any way you want according to your favorite chemicals. But it's discrete. This digital nature of the universe actually infects everything, in particular life. It's been known since the structure of DNA was elucidated that DNA is very digital. There are four possible base pairs per site, two bits per site, three and a half billion sites, seven billion bits of information in the human DNA. There's a very recognizable digital code of the kind that electrical engineers rediscovered in the 1950s that maps the codes for sequences of DNA onto expressions of proteins. There's a digital nature to the universe, and quantum mechanics makes this happen.

But the digital nature of the universe doesn't immediately tell you why the universe is complicated, and why something like life should spontaneously arise. The fact that we're here doesn't tell us anything about the probability that life exists elsewhere in the universe. Because we're here, and so we have to be here in order to contemplate this question, this tells us nothing about the probability of life except that it can exist. That's why this kind of question that Dimitar is trying to answer by looking for planets and signatures of life elsewhere is so important. We really don't know how likely it is that life should arise.

So why does complex behavior arise? Well, the universe is computing at its most microscopic scales. Two electrons, two bits of information, every time they collide, those bits flip. It's just these natural interaction and information processing that we use when we build quantum computers. Now I claim—and I can claim this because this is a mathematical theorem, which is different from just mere observational evidence—that when you have something that is computing and you program it at random, just tossing in little random bits of programming, that it necessarily generates complex behavior.



////////////////////////////// claim that there is a very basic feature of the universe, which makes it natural for it to generate complex systems and complex behaviors. We shouldn't be surprised by this. It's intrinsic in the laws of physics. This is what Craig Venter was asking, what is it about the laws of physics that give us things like life? Not only that, we know what this feature is. Let me tell you what it is, and then I'll tell you what it has to do with life. Because the spontaneous generation of complexity is important for lots of things other than life. Remember, life is overrated. There's plenty of other interesting stuff going on in the universe other than life. Long after we're all dead, and maybe other biological forms—carbon-based forms—of life are dead, I hope that other interesting things will still be going on.



///////////////////////////////Okay. What is this feature that is responsible for generating complexity? I would say that it is the universe's intrinsic ability to register and process information at its most microscopic levels. When we build quantum computers, it's one electron: one bit, to paraphrase the Supreme Court. Because of quantum mechanics, the world is intrinsically digital. That's what the 'quantum' in quantum mechanics means: it says the world comes in chunks. It's discrete. And this discreteness implies that elementary particles register bits. Their state can be described by a certain number of bits. In the case of the electron spin, one bit. In the case of photon polarization, one bit of information. Bits are intrinsic to the way the universe is. It's digital. And this digitality at the level of elementary particles gives rise to a very digital nature for chemistry, because chemistry arises out of quantum mechanics together with the masses of the elementary particles and the coupling constants of nature and the electro-magnetic force, et cetera.



//////////////////////////////////Quantum mechanics means that there are only a discrete number of species of chemicals. You can only put together two hydrogens and an oxygen to make a molecule in one way that I know of. This means that we can catalog chemicals in a discrete list—chemical number one, chemical number two, chemical number three—you can order it any way you want according to your favorite chemicals. But it's discrete. This digital nature of the universe actually infects everything, in particular life. It's been known since the structure of DNA was elucidated that DNA is very digital. There are four possible base pairs per site, two bits per site, three and a half billion sites, seven billion bits of information in the human DNA. There's a very recognizable digital code of the kind that electrical engineers rediscovered in the 1950s that maps the codes for sequences of DNA onto expressions of proteins. There's a digital nature to the universe, and quantum mechanics makes this happen.


///////////////////////////////////Einstein said, God doesn't play dice with the universe. Well, it's not true. Einstein famously was wrong about this. It was his schoolboy howler. He believed the universe was deterministic, but in fact it's not. Quantum mechanics is inherently probabilistic: that's just the way quantum mechanics works. Quantum mechanics is constantly injecting random bits of information into the universe. Now, if you take something that can compute, and you program it at random, then you find is that it will spontaneously start to generate all possible computable things. Why? Because you're generating all possible programs for the computer as you toss in information at random.



//////////////////////////////So why does complex behavior arise? Well, the universe is computing at its most microscopic scales. Two electrons, two bits of information, every time they collide, those bits flip. It's just these natural interaction and information processing that we use when we build quantum computers. Now I claim—and I can claim this because this is a mathematical theorem, which is different from just mere observational evidence—that when you have something that is computing and you program it at random, just tossing in little random bits of programming, that it necessarily generates complex behavior.



///////////////////////////////////In fact the universe is computing. I know this, because we build quantum computers—in addition, I can see a computer over there, so the universe clearly supports computation. And if you program it at random to start exploring different computations, if you go out into the infinite universe, (observational evidence suggests the universe is infinite), then somewhere out there every possible computation is being played out. Every possible way of processing information is occurring somewhere out there.



//////////////////////////////////DARWIN WAS JUST A PHASE
(Darwin war nur eine Phase)

Country Life in Connecticut: Six scientists find the future in genetic engineering

By Andrian Kreye

The origins of life were the subject of discussion on a summer day when six pioneers of science convened at Eastover Farm in Connecticut. The physicist and scientific theorist Freeman Dyson was the first of the speakers to talk on the theme: "Life: What a Concept!" An ironic slogan for one of the most complex problems. Seth Lloyd, quantum physicist at MIT, summed it up with his remark that scientists now know everything about the origin of the Universe and virtually nothing about the origin of life. Which makes it rather difficult to deal with the new world view currently taking shape in the wake of the emerging age of biology.

The roster of thinkers had assembled at the invitation of literary agent John Brockman, who specializes in scientific ideas. The setting was distinguished. Eastover Farm sits in the part of Connecticut where the rich and famous New Yorkers who find the beach resorts of the Hamptons too loud and pretentious have settled. Here the scientific luminaries sat at long tables in the shade of the rustling leaves of maple trees, breaking just for lunch at the farmhouse.

The day remained on topic, as Brockman had invited only half a dozen journalists, to avoid slowing the thinkers down with an onslaught of too many layman's questions. The object was to have them talk about ideas mainly amongst themselves in the manner of a salon, not unlike his online forum edge.org. Not that the day went over the heads of the non-scientist guests. With Dyson, Lloyd, genetic engineer George Church, chemist Robert Shapiro, astronomer Dimitar Sasselov and biologist and decoder of the genome J. Craig Venter, six men came together, each of whom have made enormous contributions in interdiscplinary sciences, and as a consequence have mastered the ability to talk to people who are not well-read in their respective fields. This made it possible for an outsider to follow the discussions, even if at moments, he was made to feel just that, as when Robert Shapiro cracked a joke about RNA that was met with great laughter from the scientists.

Freeman Dyson, a fragile gentleman of 84 years, opened the morning with his legendary provocation that Darwinian evolution represents only a short phase of three billion years in the life of this planet, a phase that will soon reach its end. According to this view, life began in primeval times with a haphazard assemblage of cells, RNA-driven organisms ensued, which, in the third phase of terrestrial life would have learned to function together. Reproduction appeared on the scene in the fourth phase, multicellular beings and the principle of death appeared in the fifth phase.

The End of Natural Selection

We humans belong to the sixth phase of evolution, which progresses very slowly by way of Darwinian natural selection. But this according to Dyson will soon come to an end, because men like George Church and J. Craig Venter are expected to succeed not only in reading the genome, but also in writing new genomes in the next five to ten years. This would constitute the ultimate "Intelligent Design", pun fully intended. Where this could lead is still difficult to anticipate. Yet Freeman Dyson finds a meaningful illustration. He spent the early nineteen fifties at Princeton, with mathematician John von Neuman, who designed one of the earliest programmable computers. When asked how many computers might be in demand, von Neumann assured him that 18 would be sufficient to meet the demand of a nation like the United States. Now, 55 years later, we are in the middle of the age of physics where computers play an integral role in modern life and culture.

Now though we are entering the age of biology. Soon genetic engineering will shape our daily life to the same extent that computers do today. This sounds like science fiction, but it is already reality in science. Thus genetic engineer George Church talks about the biological building blocks that he is able to synthetically manufacture. It is only a matter of time until we will be able to manufacture organisms that can self-reproduce, he claims. Most notably J. Craig Venter succeeded in introducing a copy of a DNA-based chromosome into a cell, which from then on was controlled by that strand of DNA.

Venter, a suntanned giant with the build of a surfer and the hunting instinct of a captain of industry, understands the magnitude of this feat in microbiology. And he understands the potential of his research to create biofuel from bacteria. He wouldn't dare to say it, but he very well might be a Bill Gates of the age of biology. Venter also understands the moral implications. He approached bioethicist Art Kaplan in the nineties and asked him to do a study on whether in designing a new genome he would raise ethical or religious objections. Not a single religious leader or philosopher involved in the study could find a problem there. Such contract studies are debatable. But here at Eastover Farm scientists dream of a glorious future. Because science as such is morally neutral—every scientific breakthrough can be applied for good or for bad.

The sun is already turning pink behind the treetops, when Dimitar Sasselov, the Bulgarian astronomer from Harvard, once more reminds us how unique and at the same time, how unstable the balance of our terrestrial life is. In our galaxy, astronomers have found roughly one hundred million planets that could theoretically harbor organic life. Not only does Earth not have the best conditions among them; it is actually at the very edge of the spectrum. "Earth is not particularly inhabitable," he says, wrapping up his talk. Here J. Craig Venter cannot help but remark as an idealist: "But it is getting better all the time".

Translated by Karla Taylor



////////////////////////////////RICHARD DAWKINS [8.27.07]
Evolutionary Biologist, Charles Simonyi Professor For The Understanding Of Science, Oxford University; Author, The God Delusion


"By Darwinian evolution he [Woese] means evolution as Darwin understood it, based on the competition for survival of noninterbreeding species."

"With rare exceptions, Darwinian evolution requires established species to become extinct so that new species can replace them."

These two quotations from Dyson constitute a classic schoolboy howler, a catastrophic misunderstanding of Darwinian evolution. Darwinian evolution, both as Darwin understood it, and as we understand it today in rather different language, is NOT based on the competition for survival of species. It is based on competition for survival WITHIN species. Darwin would have said competition between individuals within every species. I would say competition between genes within gene pools. The difference between those two ways of putting it is small compared with Dyson's howler (shared by most laymen: it is the howler that I wrote The Selfish Gene partly to dispel, and I thought I had pretty much succeeded, but Dyson obviously hasn't read it!) that natural selection is about the differential survival or extinction of species. Of course the extinction of species is extremely important in the history of life, and there may very well be non-random aspects of it (some species are more likely to go extinct than others) but, although this may in some superficial sense resemble Darwinian selection, it is NOT the selection process that has driven evolution. Moreover, arms races between species constitute an important part of the competitive climate that drives Darwinian evolution. But in, for example, the arms race between predators and prey, or parasites and hosts, the competition that drives evolution is all going on within species. Individual foxes don't compete with rabbits, they compete with other individual foxes within their own species to be the ones that catch the rabbits (I would prefer to rephrase it as competition between genes within the fox gene pool).

The rest of Dyson's piece is interesting, as you'd expect, and there really is an interesting sense in which there is an interlude between two periods of horizontal transfer (and we mustn't forget that bacteria still practise horizontal transfer and have done throughout the time when eucaryotes have been in the 'Interlude'). But the interlude in the middle is not the Darwinian Interlude, it is the Meiosis / Sex / Gene-Pool / Species Interlude. Darwinian selection between genes still goes on during eras of horizontal transfer, just as it does during the Interlude. What happened during the 3-billion-year Interlude is that genes were confined to gene pools and limited to competing with other genes within the same species. Previously (and still in bacteria) they were free to compete with other genes more widely (there was no such thing as a species outside the 'Interlude'). If a new period of horizontal transfer is indeed now dawning through technology, genes may become free to compete with other genes more widely yet again.

As I said, there are fascinating ideas in Freeman Dyson's piece. But it is a huge pity it is marred by such an elementary mistake at the heart of it.

Richard


--------------------------------------------------------------------------------
FREEMAN DYSON [8.30.07]
Physicist, Institute of Advanced Study, Author, Many Colored Glass: Reflections on the Place of Life in the Universe


Dear Richard Dawkins,

Thank you for the E-mail that you sent to John Brockman, saying that I had made a "school-boy howler" when I said that Darwinian evolution was a competition between species rather than between individuals. You also said I obviously had not read The Selfish Gene. In fact I did read your book and disagreed with it for the following reasons.

Here are two replies to your E-mail. The first was a verbal response made immediately when Brockman read your E-mail aloud at a meeting of biologists at his farm. The second was written the following day after thinking more carefully about the question.

First response. What I wrote is not a howler and Dawkins is wrong. Species once established evolve very little, and the big steps in evolution mostly occur at speciation events when new species appear with new adaptations. The reason for this is that the rate of evolution of a population is roughly proportional to the inverse square root of the population size. So big steps are most likely when populations are small, giving rise to the ``punctuated equilibrium'' that is seen in the fossil record. The competition is between the new species with a small population adapting fast to new conditions and the old species with a big population adapting slowly.

Second response. It is absurd to think that group selection is less important than individual selection. Consider for example Dodo A and Dodo B, competing for mates and progeny in the dodo population on Mauritius. Dodo A competes much better and
has greater fitness, as measured by individual selection. Dodo A mates more often and has many more grandchildren than Dodo B. A hundred years later, the species is extinct and the fitness of A and B are both reduced to zero. Selection operating at the species level trumps selection at the individual level. Selection at the species level wiped out both A and B because the species neglected to maintain the ability to fly, which was essential to survival when human predators appeared on the island. This situation is not peculiar to dodos. It arises throughout the course of evolution, whenever environmental changes cause species to become extinct.

In my opinion, both these responses are valid, but the second one goes more directly to the issue that divides us. Yours sincerely, Freeman Dyson.



/////////////////////////////Harvesting Rainwater by Not Letting It Go to Waste


An illustration of Lancaster's property in 2006 shows that no runoff leaves the site. Street runoff is directed to basins and trees along the curb. All graywater is directed to and recycled within the landscape. With palm trees removed, winter solar access is regained. Courtesy Brad Lancaster




Morning Edition, January 10, 2008 · Big rains slammed the West this week — big news in a region that has gotten used to dry weather.

Now some city governments are looking to rain to ease their water woes.


///////////////////////////////The Science of Siesta: Research Finds That Napping Improves Brain Functioning
Let’s hear it for siesta time. What better news than to hear that taking midday naps are good for your grey matter? Companies that want smarter employees should let them take 90 minute midday nap-time. Researchers at the University of Haifa in cooperation with the Sleep Laboratory at the Sheba Medical Center and researchers from the Department of Psychology at the University of Montreal recently concluded that a daytime nap changes the course of consolidation in the brain in several positive...

Read the whole entry »

No comments: